
ИНФОРМАТИКА И КИБЕРНЕТИКА
№ 2 (40), 2025, Донецк, ДонНТУ

 __

52

УДК 004.415.2

Анализ подходов к разработке и оптимизации микросервисных систем

А. Е. Колесников, Т. В. Мартыненко, Е. А. Шуватова

Донецкий национальный технический университет
E-mail: lepy0ha@yandex.ru

Аннотация
В статье рассматриваются архитектурные принципы и подходы к разработке и
оптимизации микросервисных систем. Приведён анализ промышленных реализаций,
выделены общие закономерности. Особое внимание уделено межсервисному
взаимодействию, отказоустойчивости, наблюдаемости и инструментам повышения
производительности. Микросервисный подход открывает значительные возможности для
масштабируемости и гибкости систем, но требует аккуратного и обоснованного
применения. Его эффективность проявляется там, где архитектурная сложность
оправдана бизнес-потребностями и поддерживается зрелыми процессами разработки и
эксплуатации.

Введение

Современная цифровая трансформация
предъявляет новые требования к архитектуре
программных систем. Монолитные приложения
постепенно уступают место микросервисным
архитектурам, обеспечивающим большую
гибкость, масштабируемость и скорость
разработки. Однако переход к микросервисам
сопряжён с техническими и организационными
вызовами, что требует внимательного анализа
подходов к их разработке и оптимизации [2].

Актуальность темы обусловлена
усложнением бизнес-процессов, активным
внедрением облачных технологий и накопленным
опытом первых внедрений, выявившим как
преимущества, так и скрытые риски
микросервисов. Цель исследования —
комплексный анализ современных методов
построения и оптимизации микросервисных
систем, включая технические и организационные
аспекты, а также обоснование целесообразности
перехода к такой архитектуре.

Методология включает анализ успешных
кейсов, систематизацию практик и выявление
закономерностей, полезных для архитектурных
решений. Работа охватывает ключевые
характеристики микросервисов, этапы
оптимизации и рекомендации по архитектурному
планированию с учётом эксплуатационных
требований.

Практическая значимость исследования
заключается в том, что представленные выводы и
рекомендации основаны на реальном опыте, что
делает их полезными для архитекторов и
технических руководителей, принимающих
стратегические решения в области ИТ-
разработки.

Сравнительный анализ готовых
микросервисных решений

В современных условиях разработчики
имеют возможность выбирать между созданием
собственной микросервисной платформы с нуля и
использованием готовых решений от ведущих
вендоров. Каждый из этих подходов имеет свои
преимущества и ограничения, которые
необходимо учитывать при проектировании
архитектуры.

Коммерческие платформы (такие как Red
Hat OpenShift, Pivotal Cloud Foundry или IBM
Cloud Private) предлагают комплексные решения
для развертывания и управления микросервисами
[3]. Эти платформы предоставляют встроенные
механизмы оркестрации, мониторинга,
балансировки нагрузки и безопасности, что
значительно ускоряет процесс внедрения.
Основное преимущество — снижение
операционных расходов за счет использования
предварительно настроенных и
протестированных компонентов. Однако такие
решения часто обладают ограниченной
гибкостью и могут накладывать дополнительные
лицензионные расходы.

Open-source экосистемы (Kubernetes в
сочетании с Istio, Prometheus и другими
инструментами) предлагают более гибкий подход
[6]. Этот вариант позволяет создать полностью
кастомизируемую платформу, идеально
соответствующую конкретным требованиям
проекта. Сообщество разработчиков постоянно
совершенствует эти инструменты, предлагая
новые функции и исправления. Недостатком
является необходимость значительных
внутренних экспертиз для поддержки и
интеграции различных компонентов.

Сервисы облачных провайдеров (AWS
ECS/EKS, Azure Service Fabric, Google Kubernetes

ИНФОРМАТИКА И КИБЕРНЕТИКА
№ 2 (40), 2025, Донецк, ДонНТУ

 __

53

Engine) занимают промежуточное положение.
Они сочетают преимущества управляемых
сервисов с возможностью использования
открытых стандартов. Облачные решения
особенно эффективны для компаний, уже
использующих соответствующую
инфраструктуру, так как обеспечивают глубокую
интеграцию с другими сервисами провайдера.
Однако они могут создавать vendor lock-in и
увеличивать долгосрочные эксплуатационные
расходы.

При выборе между этими вариантами
следует учитывать несколько ключевых
факторов:

 требования к времени вывода на
рынок (готовые решения быстрее);

 наличие внутренней экспертизы
(open-source требует больше знаний);

 бюджетные ограничения
(облачные сервисы могут быть дороже в
долгосрочной перспективе);

 потребности в кастомизации
(готовые платформы менее гибки);

 требования к безопасности и
соответствию стандартам.

Практика показывает, что крупные
предприятия часто выбирают гибридный подход,
комбинируя управляемые сервисы для базовой
инфраструктуры с кастомными решениями для
специфических бизнес-процессов. Стартапы и
средний бизнес обычно отдают предпочтение
облачным решениям из-за их простоты
развертывания. Наиболее технически зрелые
организации создают собственные платформы на
базе open-source инструментов, что обеспечивает
максимальную гибкость и контроль.

Архитектура микросервисных систем и
подходы к разработке

Эксплуатация микросервисной
архитектуры требует принципиально нового
подхода к управлению жизненным циклом
приложения. В отличие от монолитных систем,
где основной акцент делался на стабильности
версий, в микросервисной экосистеме ключевое
значение приобретает управление постоянными
изменениями. Это обусловлено самой природой
распределенной архитектуры, где десятки или
даже сотни сервисов могут независимо
эволюционировать с разной скоростью.

Центральное место в эксплуатационной
модели занимают практики непрерывной
интеграции и доставки (CI/CD), которые
становятся не просто желательными, а абсолютно
необходимыми. Современные инструменты
CI/CD эволюционировали для работы со
сложными микросервисными топологиями,
предлагая возможности канареечного
развертывания (canary releases) и blue-green
деплойментов. Эти механизмы позволяют

постепенно вводить изменения в эксплуатацию,
минимизируя потенциальное воздействие на
конечных пользователей.

Особую сложность представляет
обеспечение наблюдаемости (observability)
распределенной системы. Традиционный
мониторинг, ориентированный на отдельные
сервисы, уступает место комплексным решениям,
способным отслеживать транзакции через
границы множества сервисов. Современные
инструменты типа распределенного трейсинга
(distributed tracing) и лог-агрегации стали
неотъемлемой частью микросервисного стека,
позволяя инженерам понимать поведение
системы в целом, а не только ее отдельных
компонентов [10].

Хаотическое тестирование (Chaos
Engineering) превратилось из экзотической
практики в стандартную процедуру поддержания
надежности. В условиях, когда отказы отдельных
компонентов становятся не исключением, а
ожидаемым событием, важно заранее проверять,
как система ведет себя в различных сценариях
сбоев. Такие инструменты как Chaos Monkey или
Gremlin позволяют моделировать различные
сценарии отказов в контролируемых условиях [5].

Не менее важным аспектом является
управление конфигурацией и секретами в
распределенной среде. Централизованные
хранилища конфигураций, такие как HashiCorp
Consul или Spring Cloud Config, помогают
поддерживать согласованность настроек между
множеством сервисов, обеспечивая при этом
необходимый уровень безопасности [4]. Особое
внимание уделяется механизмам ротации
секретов и управления доступом, так как
компрометация одного сервиса в распределенной
системе может иметь каскадные последствия.

Промышленные реализации
микросервисных архитектур

Современные технологические гиганты
демонстрируют разнообразные подходы к
реализации микросервисных архитектур,
адаптированные под специфику их бизнес-
моделей и технических требований.

Netflix, являясь пионером
микросервисного подхода, разработала
высокоэффективную систему, основанную на
принципах отказоустойчивости и глобального
масштабирования. Их архитектура сочетает
функциональную декомпозицию с продвинутыми
механизмами кэширования и уникальными
инструментами тестирования на устойчивость,
такими как Chaos Monkey [8].

Uber реализовал инновационную
геораспределённую архитектуру, где ключевые
сервисы дублируются в различных регионах
мира. Это решение обеспечивает
беспрецедентную отказоустойчивость и низкую

ИНФОРМАТИКА И КИБЕРНЕТИКА
№ 2 (40), 2025, Донецк, ДонНТУ

 __

54

задержку для пользователей в любой точке
земного шара, но требует сложных механизмов
синхронизации данных.

Amazon применил микросервисный
подход для создания событийно-
ориентированной экосистемы, где каждый сервис
соответствует конкретной бизнес-способности.
Их архитектура демонстрирует выдающуюся
масштабируемость, хотя и сталкивается с
вызовами обеспечения транзакционной
согласованности.

Spotify разработал уникальную
организационно-техническую модель, где

структура микросервисов зеркалирует
организацию команд разработки (сквады и
трибы). Этот подход обеспечивает высокую
скорость внедрения изменений, но требует
тщательного контроля за границами сервисов [3].

Alibaba представляет пример строго
стандартизированной микросервисной
экосистемы с жёстким разделением компонентов.
Их решение, построенное вокруг Service Mesh
(Istio), обеспечивает предсказуемость и
управляемость системы в условиях
экстремальных нагрузок [9].

Таблица 1 - Сравнительная таблица характеристик

Критерий Netflix Uber Amazon Spotify Alibaba
Метод
разработки

Функциональная
декомпозиция,
независимые
сервисы на
Java/Python

Геокластерная
архитектура,
gRPC для
межсервисного
взаимодействия

Декомпозиция
по бизнес-
способностям,
event-driven
(SQS/SNS)

Организаци-
онная деком-
позиция
(сквады/
трибы), REST
API

Гибридный
подход
(REST +
Events),
строгое
разделение
данных

Оптимизация
производи-
тельности

Кэширование
(EVCache),
асинхронная
обработка
(RxJava), Chaos
Engineering
(Chaos Monkey)

Шардирование
данных по
регионам,
кэширование в
Redis

Автомасшта-
бирование
(EC2 Auto
Scaling),
оптимизация
запросов
(DynamoDB)

Ленивая
загрузка
данных, edge-
кэширование

Service Mesh
(Istio),
оптимизация
запросов
через CDN

Управление
данными

Polyglot
persistence
(Cassandra,
MySQL),
репликация
между
регионами

Глобально
распределённая
БД
(Schemaless),
Event Sourcing

Разделение
БД по
сервисам,
CQRS-подход

Гибридный
подход:
общие БД для
связанных
сервисов

Строгое «DB
per service»,
распределён-
ные
транзакции
через Seata

Безопасность Centralized Auth
(Zuul), mTLS
для внутренних
сервисов

Геоизолирован
ные сервисы,
ролевая модель
доступа

IAM-
политики,
шифрование
KMS

OAuth 2.0,
изоляция
окружений

Глубокая
защита на
уровне
Service Mesh,
аппаратное
шифрование

Мониторинг и
observability

Hystrix для
отказоустойчиво
сти, Atlas для
метрик

Jaeger для
трейсинга,
Prometheus +
Grafana

CloudWatch,
X-Ray для
трейсинга

Логирование
через ELK,
кастомные
дашборды

SkyWalking
(APM),
интеграция с
Prometheus

DevOps-
практики

Spinnaker для
CD,
канареечные
развёртывания

Инфраструктур
а как код
(Terraform),
feature flags

AWS
CodePipeline,
blue/green-
деплойменты

GitOps-
подход,
постепенный
rollout

Внутренние
PaaS-
решения,
автоматическ
ое
тестирование
сбоев

Эти реализации демонстрируют, что не

существует универсального "идеального"
подхода к микросервисной архитектуре - каждая
компания разрабатывает решения, оптимальные
для её конкретных требований и масштабов.

Однако все они разделяют общие принципы
декомпозиции, автономности сервисов и
автоматизированного управления
инфраструктурой.

ИНФОРМАТИКА И КИБЕРНЕТИКА
№ 2 (40), 2025, Донецк, ДонНТУ

 __

55

Разработка обобщённого алгоритма
оптимизации микросервисных систем

Оптимизация микросервисной
архитектуры — это комплексный процесс,
который требует последовательных и
взаимосвязанных шагов. Обобщённый алгоритм
включает четыре ключевых этапа, направленных
на поэтапное улучшение состояния системы: от
анализа текущего положения до финальной
настройки инфраструктуры.

Этап 1. Диагностика текущего состояния
Первым шагом в алгоритме является

диагностика системы, которая играет роль
отправной точки для всех последующих
действий. На этом этапе команда формирует
целостное представление о структуре
микросервисной архитектуры, фиксирует
существующие зависимости и исследует
поведение сервисов под нагрузкой.

Ключевая задача — выявить узкие места,
перегруженные участки, неэффективные вызовы
и скрытые зависимости, которые мешают
масштабированию или вызывают сбои.
Диагностика охватывает как технические
параметры (производительность,
ресурсоёмкость), так и логические аспекты
взаимодействия компонентов. Использование
инструментов мониторинга и трассировки
позволяет получить данные, необходимые для
принятия решений на следующих этапах.

Этап 2. Оптимизация взаимодействия
между сервисами

На основе результатов диагностики
проводится анализ того, как именно
микросервисы обмениваются данными и
координируют свои действия. Основная цель
этого этапа — минимизировать задержки, снизить
сетевую нагрузку и повысить устойчивость
системы к сбоям.

Оптимизация может включать переход на
более эффективные протоколы взаимодействия,
сокращение количества синхронных вызовов,
внедрение асинхронных паттернов и пересмотр
логики передачи данных. Также рассматриваются
подходы к уменьшению избыточной связанности
между компонентами, что способствует
повышению гибкости и управляемости
архитектуры [7].

Этап 3. Оптимизация работы с данными
Следующий этап касается одного из

наиболее ресурсоёмких элементов
микросервисной архитектуры — работы с
данными. Здесь важно не только ускорить
выполнение запросов и снизить нагрузку на базу
данных, но и пересмотреть подход к
проектированию моделей хранения.

Оптимизация охватывает улучшение
качества SQL-запросов, внедрение стратегий
кэширования, а также выбор подходящей базы
данных для каждой бизнес-задачи — будь то

документоориентированная, колоночная или
графовая модель. Дополнительно
рассматриваются методы масштабирования
хранилищ, такие как репликация и шардирование,
с учётом компромиссов между доступностью и
согласованностью данных.

Этап 4. Инфраструктурные улучшения
Заключительный этап алгоритма

направлен на повышение надёжности,
масштабируемости и безопасности всей системы,
а также на ускорение процессов вывода новых
версий в эксплуатацию.

Реализуется гибкое масштабирование,
адаптированное к текущей нагрузке, повышается
устойчивость к отказам за счёт применения
шаблонов отказоустойчивости, таких как
ограничители, повторные попытки и изоляция
ресурсов. Особое внимание уделяется
безопасности внутреннего взаимодействия и
автоматизации процессов развертывания [8]. Это
позволяет не только оперативно реагировать на
сбои, но и снижать риски при выпуске
обновлений.

Таким образом, предложенный алгоритм
охватывает все критически важные аспекты
функционирования микросервисных систем. Его
применение обеспечивает не только устранение
текущих проблем, но и формирует устойчивую
основу для их дальнейшего развития и
масштабирования.

Заключение
Разработка и оптимизация

микросервисных систем представляет собой
многоуровневую задачу, требующую
комплексного подхода.

Как показал проведённый анализ,
успешная реализация микросервисной
архитектуры возможна только при сочетании
технической зрелости, осознанного
проектирования и готовности к организационным
изменениям.

Предложенный обобщённый алгоритм
оптимизации систематизирует ключевые этапы
— от диагностики и улучшения межсервисного
взаимодействия до оптимизации работы с
данными и инфраструктурных решений. Он
основан на обобщении практик ведущих
технологических компаний и может служить
опорой при принятии архитектурных решений в
условиях реальных проектов.

Микросервисный подход открывает
значительные возможности для
масштабируемости и гибкости систем, но требует
аккуратного и обоснованного применения. Его
эффективность проявляется там, где
архитектурная сложность оправдана бизнес-
потребностями и поддерживается зрелыми
процессами разработки и эксплуатации.

ИНФОРМАТИКА И КИБЕРНЕТИКА
№ 2 (40), 2025, Донецк, ДонНТУ

 __

56

Литература
1. Шуватова, Е. А. Анализ методов

определения эффективной архитектуры
программных систем / Е. А. Шуватова, Т. В.
Мартыненко // Информатика, управляющие
системы, математическое и компьютерное
моделирование (ИУСМКМ-2024) : XV
Международная научно-техническая
конференция в рамках X Международного
Научного форума Донецкой Народной
Республики, Донецк, 29–30 мая 2024 года. –
Донецк: Донецкий национальный технический
университет, 2024. – С. 125-130. – EDN ZXRUAI.

2. Ньюмен, С. Микросервисы. Паттерны
разработки и рефакторинга [Текст] / С. Ньюмен;
пер. с англ. А. Киселева. - СПб.: Питер, 2021. - 352
с.

3. Ричардсон, К. Микросервисы. Паттерны
проектирования [Текст] / К. Ричардсон; пер. с
англ. Д. Воронкова. - М.: Вильямс, 2020. - 592 с.

4. Вольф, К., Эйнсворт, Р. Микросервисы в
действии [Текст] / К. Вольф, Р. Эйнсворт; пер. с
англ. П. Петрова. - М.: ДМК Пресс, 2019. - 384 с.

5. Жемеров, Д. Kubernetes в действии
[Текст] / Д. Жемеров. - СПб.: Питер, 2021. - 512 с.

6. Клеппман, М. Высоконагруженные
приложения. Программирование,
масштабирование, поддержка [Текст] / М.
Клеппман; пер. с англ. И. Иванова. - СПб.: Питер,
2020. - 608 с.

7. Гребенюк, С. А. Архитектура
микросервисов: теория и практика [Текст] / С. А.
Гребенюк. – М.: ДМК Пресс, 2021. – 312 с.

8. Ляпунов, С. В. DevOps и микросервисы:
внедрение и сопровождение [Текст] / С. В.
Ляпунов. – СПб.: Питер, 2022. – 288 с.

9. Microsoft Docs. Руководство по
микросервисной архитектуре [Электронный
ресурс]. - Режим доступа:
https://docs.microsoft.com/ru-
ru/azure/architecture/guide/architecture-
styles/microservices (дата обращения: 14.04.2025).

10. Habr. Практический опыт перехода на
микросервисы [Электронный ресурс]. - Режим
доступа: https://habr.com/ru/company/oleg-
bunin/blog/522396/ (дата обращения: 14.04.2025).

Колесников А. Е., Мартыненко Т. В. , Шуватова Е. А. Анализ подходов к разработке и
оптимизации микросервисных систем. В статье рассматриваются архитектурные
принципы и подходы к разработке и оптимизации микросервисных систем. Приведён анализ
промышленных реализаций, выделены общие закономерности. Особое внимание уделено
межсервисному взаимодействию, отказоустойчивости, наблюдаемости и инструментам
повышения производительности. Микросервисный подход открывает значительные
возможности для масштабируемости и гибкости систем, но требует аккуратного и
обоснованного применения. Его эффективность проявляется там, где архитектурная
сложность оправдана бизнес-потребностями и поддерживается зрелыми процессами
разработки и эксплуатации.

Ключевые слова: микросервисная архитектура, распределенные системы, оптимизация
производительности, межсервисное взаимодействие, DevOps, Kubernetes, service mesh,
observability

Kolesnikov A. E., Martynenko T. V., Shuvatova E. A. Analysis of approaches to the development
and optimization of microservice systems. The article explores architectural principles and
approaches to the development and optimization of microservice systems. Industrial
implementations are analyzed, revealing patterns. Special attention is paid to inter-service
communication, fault tolerance, observability, and performance tools. The microservice approach
opens up significant opportunities for system scalability and flexibility, but requires careful and
well-reasoned application. Its effectiveness is evident where architectural complexity is justified by
business needs and supported by mature development and operational processes.

Keywords: microservice architecture, distributed systems, performance optimization, inter-service
communication, DevOps, Kubernetes, service mesh, observability

Статья поступила в редакцию 25.05.2025
Рекомендована к публикации доцентом Приваловым М. В.

